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Abstract
A theoretical model describing quasicritical behaviour of the nuclear magnetic
resonance (NMR) relaxation rates 1/T1, 1/T2 and muon relaxation rate λ for
cubic ferromagnets and antiferromagnets with spin fluctuations is presented.
The model extends and generalizes the model of Moriya and explains why
the observed experimental values of the critical exponents are different from
the values predicted by the theory of critical phenomena. The formulae for the
relaxation rates obtained from this model are used for fitting to the experimental
NMR data for YMn2Dx , TbMn2D2 and the muon spin-rotation (µSR) data
for YMn2, YMn2Dx , GdMn2 and Y(Co1−x Alx )2 (ferromagnetic). It is shown
that the dependence of the exchange coupling constant on the wavevector k is
important for understanding the observed quasicritical effects.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The behaviour of magnetic materials above their magnetic transition temperatures has been of
great interest both theoretically and experimentally over the past few years. Of most interest is
the mechanism of the transition from the thermally activated paramagnetic state to the ordered
state of strongly interacting magnetic moments. In the temperature range above but close to the
ordering temperature (the Curie temperature TC or the Néel temperature TN ), the interactions
evolve from short-range to long-range interactions, but the processes are not yet clear or
satisfactorily described; the related phenomena are referred to as critical behaviour. Many
physical quantities show critical behaviour when the temperature T approaches the transition
point TC,N , i.e. their temperature dependence can be described by the function

F(δ) = constant × δ−η (1)
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where δ = T −TC,N

TC,N
and η is a critical exponent. Theoretically calculated critical exponents

are constants independent of the chemical composition of the materials investigated, but their
specific values depend crucially on the theoretical model assumed. For example, the critical
exponent for magnetic susceptibility given by the Ginzburg–Landau model is 1.0, that given
by the three-dimensional Ising model is 1.2378 and that given by the Heisenberg model is
1.388 [1]. The problem of critical behaviour for itinerant electron materials is very difficult,
because of the spin fluctuations that have to be considered. To explain the hyperfine broadening
of the nuclear magnetic resonance (NMR) linewidth as the transition point is approached from
above, Moriya [2] proposed a model in the framework of the theory of spin fluctuations.
He obtained asymptotic values of the NMR linewidth near the transition point proportional
to δ−3/2 for cubic ferromagnets and to δ−1/2 for cubic antiferromagnets. Lovesey et al [3, 4]
discussed the critical behaviour of the muon relaxation rate λ near the critical point and obtained
values proportional to δ−3ν/2 (where ν = 0.70) for the Heisenberg ferromagnet and δ−ν/2 for
the Heisenberg antiferromagnet. Strictly speaking, equation (1) is valid only in the limit
T → TC,N and the behaviour can be quite different when T differs from TC,N by a finite
amount.

Our interest was focused on the Laves phases RMn2 (R = rare earth or Y) and their
hydrides, where spin fluctuations must be taken into account. In our approach to explaining
the NMR relaxation rates 1/T1, 1/T2 and the muon relaxation rate λ in YMn2Dx , we have
shown [5] that these quantities change according to equation (1) over quite a wide temperature
range, which is rather surprising. Moreover, the values of η obtained by us depend on the
deuterium concentration x and differ from the 1/2 value. Although the behaviour described
by the empirical formula (1) looks like a critical one, it cannot be explained within the standard
theory of critical phenomena, and thus we call it ‘quasicritical’ [5]. The YMn2Dx hydrides are
cubic ferrimagnets with a very small ferromagnetic component; hence they were treated by
us as antiferromagnets. To explain their behaviour in the paramagnetic region, we proposed
a model in the framework of the theory of spin fluctuations [5]. In the present paper we
extend this model to both ferromagnetic and antiferromagnetic cubic materials. The proposed
model represents a generalized, extended version of Moriya’s theory [2]. We present, discuss
and apply this model not only to our data for YMn2Dx [5, 6], but also to our NMR data for
TbMn2D2 [7] and muon spin-rotation (µSR) data for YMn2 [8], GdMn2 [9] and Y(Co1−x Alx )2

(ferromagnetic) [10].

2. Theoretical considerations

There are three important types of nuclear spin interaction mechanism in magnetically ordered
systems [2]:

(1) hyperfine interactions;
(2) indirect nuclear spin interaction via the hyperfine interactions;
(3) direct nuclear dipole–dipole interaction in which the electron spins do not participate.

In the following calculations we concentrate on the first two mechanisms, because at high
temperatures they are determined by the electron spin motion. This motion is generally very
rapid at high temperatures; thus the nuclear spin motion can be neglected in this range.

According to Moriya’s theory of spin fluctuations [2], the spin–lattice relaxation time T1

for a cubic structure at the temperature T can be written approximately as follows:

1

T1
= 2A2kB T

h̄2g2µ2
B

1

N

∑
k

χ(k)

�k
(2)
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where A is a hyperfine coupling constant, N is the number of magnetic atoms per unit volume,
χ(k) is a staggered susceptibility, �k determines the decay of the time correlation function:

fk(t) = exp(−�k t) (3)

and the other symbols have their usual meanings. The hyperfine coupling is in principle
a tensor and depends on the wavevector k if we work in the k-representation. However,
because the hyperfine interaction is of short range and isotropic, we can approximate it by a
scalar [11, 12]. If we consider muon spin depolarization the dipolar interaction may become
important. This will be discussed later. The calculation of 1/T1 could be carried out if the
analytical forms of χ(k) and �k were known. Both quantities depend on the local magnetic
symmetry of the compound investigated. In the following we shall consider the ferromagnetic
and antiferromagnetic cases separately.

2.1. Ferromagnetic materials

For a cubic ferromagnetic crystal the scalar susceptibility χ(k) has the form

χ(k) = g2µ2
B S(S + 1)/3kBTC

δ + {1 − (J (k)/J (0))} (4)

where S is the spin of the magnetic ion and J (k) is the Fourier transform of the exchange
coupling constant. For small k the susceptibility can be approximated by

χ(k) = C1

δ + γ k2
. (5)

The coefficient �k in the time correlation function for a ferromagnet can be expanded into
powers of k as follows [2]:

�k = �k2 + 	k4 + · · · (6)

where � is proportional to δ and 	 remains finite at TC . Moriya introduced the term 	k4

making an extension of the van Hove phenomenological theory [13] in which �k depends on
k2 only. Thus the nuclear relaxation time T1 can be rewritten approximately as

1

T1
= 2A2kB T

h̄2g2µ2
B

1

N

∑
k

C1

(δ + γ k2)(�k2 + 	k4)
. (7)

To obtain the asymptotic behaviour

1

T1
∝ δ−3/2 (8)

as T → TC , Moriya assumed

�

	
= δ

γ
. (9)

We abandon this assumption because it has no justification and we introduce a
dimensionless parameter α:

�

	
= α

δ

γ
. (10)

Changing summation into integration in a standard way, we obtain

1

T1
= 2A2kB T

h̄2g2µ2
B

ν
1

(2π)3

∫
γ C1 d3k

	(δ + γ k2)(αδ + γ k2)k2
(11)
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where ν = V/N is the atomic volume. Performing the integration over a sphere within the
first Brillouin zone for α �= 1, we get

1

T1
= A2νS(S + 1)

3π2h̄2γ	

T

TC

(
δ

γ

)−3/2[ 1

1 − α
arctan

(
km

(
δ

γ

)−1/2)

+
1

(1 − α)
√

α
arctan

(
km√
α

(
δ

γ

)−1/2)]
(12)

where km is a cut-off parameter. It is easy to see that we can recover the asymptotic behaviour
given by equation (8) when T → TC , but our expression (12) is valid over a much larger
temperature range and consequently the related phenomena are referred to as quasicritical
behaviour.

2.2. Antiferromagnetic materials

For a cubic antiferromagnetic crystal, the scalar susceptibility has a similar form:

χ(k) = g2µ2
B S(S + 1)/3kBTN

δ + {1 − (J (k)/J (K0))} (13)

where TN is the Néel temperature, δ = T −TN
TN

and K0 is the vector where J (k)has the maximum.
We can now expand the denominator and get

χ(k) = g2µ2
B S(S + 1)/3kBTN

δ + γκ2
(14)

where κ = k − K0.
The coefficient �k for an antiferromagnet can be approximately represented as

�k+K0 = �′ + 	′k2 + · · · (15)

where �′ ∝ δ and 	′ is finite at TN as before. Again Moriya introduced the parameter
	′ making an extension of the de Gennes and Villain phenomenological theory for
antiferromagnets [14] which—as he stated—was inadequate even qualitatively. The term 	′k2

is necessary to take into account the k-dependence of the time correlation function. Moving
the centre of the coordinate system, we can write

∑
k

χ(k)

�k

=
∑

k

χ(K0 + k)

�K0+k

. (16)

Then the relaxation time T1 takes the form

1

T1
= 2A2kB T

h̄2g2µ2
B

1

N

∑
k

C2

(δ + γ k2)(�′ + 	′k2)
. (17)

For the same reasons as for ferromagnets, we introduce the parameter α:

�′

	′ = α
δ

γ
(18)

and we get for α �= 1

1

T1
= A2νS(S + 1)

3π2h̄2γ	′
T

TN

(
δ

γ

)−1/2[ 1

1 − α
arctan

(
km

(
δ

γ

)−1/2)

+

√
α

(α − 1)
arctan

(
km√
α

(
δ

γ

)−1/2)]
(19)
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Figure 1. The muon relaxation rate λ as a function of temperature for Y(Co1−x Alx )2. The
experimental points taken from [10]; the solid curves are the curves fitted with equation (21).

as we have shown in [5]. We can also recover here the asymptotic behaviour
1

T1
∝ δ−1/2 (20)

as in the original Moriya’s work for T → TN , but the range of applicability of (19) is much
wider than (20) and this behaviour is also referred to as quasicritical as in the former case.

3. Numerical results and discussion

3.1. Ferromagnetic materials

In our literature search we had difficulty in finding an appropriate set of T1-relaxation
data; thus to test our formula (12) we analysed the µSR results for the weak ferromagnet
Y(Co1−x Alx )2 [10]. In this Laves-phase-type material, muons locate in A2B2 interstitial sites,
like D atoms in YMn2Dx . We compared our formula (12) for T −1

1 with experimental data for
the muon depolarization rate λ. We found it reasonable, because the behaviour of muons is
caused by the same physical interaction as in the case of the NMR T1-relaxation rate for nuclear
magnetic moments of the magnetic or non-magnetic atoms. That is, spin fluctuations cause
nuclear spin relaxation as well as muon magnetic moment depolarization in the interstitial
positions. According to Yaouanc et al [11], if we identify λ with the inverse muon spin–lattice
relaxation time, the µSR expression should be equivalent to the formula given by Moriya for
NMR [2]. Some care has to be taken here because the dipolar interaction may in general be
important for muons. However, its contribution should be crucial only in strong ferromagnets
and for weak ferromagnets it can be neglected. Thus the formula (12), when adapted for λ in
the case of weak ferromagnets, should differ only by a numerical prefactor:

λ = constant × T

TC

(
δ

γ

)−3/2[ 1

1 − α
arctan

(
km

(
δ

γ

)−1/2)

+
1

(1 − α)
√

α
arctan

(
km√
α

(
δ

γ

)−1/2)]
. (21)
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Table 1. The values describing quasicritical behaviour for the materials analysed. The values of
the critical exponent η and the TC,N fitted using equation (1) or taken from literature are given for
comparison. In the last two columns we present the values of TC,N and γ obtained from the fits
using equations ((12), (19), (21) and (22)).

Data TC,N

Material source η TC,N (fit) γ

Y(Co1−x Alx )2 λ [10] 0.68 13 6.8(3) 0.073(4)
x = 150
Y(Co1−x Alx )2 λ [10] 0.64 21.5 14.7(6) 0.067(5)
x = 175
YMn2, T ↓ λ [8] 0.35 [8] 92.5 75(1) 0.288(7)
YMn2, T ↑ λ [8] 0.35 [8] 113 87.4(8) 0.295(9)
GdMn2, 0.0 GPa λ [9] 0.34 [9] 99 [9] — 0.06(1)

92.6(3) 0.096(2)
GdMn2, 0.3 GPa λ [9] 0.43 [9] 81 [9] — 0.12(1)

79(1) 0.13(1)
GdMn2, 0.6 GPa λ [9] 0.43 [9] 71 [9] — 0.12(1)

69.0(7) 0.146(9)
TbMn2D2 T1 [7] 0.937 [7] 270.5 [7] — 0.21(1)

265(1) 0.19(2)
TbMn2D2 T2 [7] 0.937 [7] 273.6 [7] — 0.209(9)

270.4(4) 0.19(1)

We fitted the function λ(T ), given by equation (21), to the experimental data for the
Y(Co1−x Alx )2 compound with x = 0.150 and 0.175. The results are presented in figure 1.
The parameters γ and TC obtained by the fitting procedure are given in table 1. The parameters
α and km , which have no physical meaning, are omitted in the table. The agreement between
experimental points and the theoretical curve is almost ideal, though the calculated Curie
temperature TC is slightly lower than the one estimated from the experiment. However, we
have to keep in mind that the determination of TC depends somewhat on the experimental set-up
and on the definition used as well. The γ -values obtained for Y(Co1−xAlx )2 are comparable
with those for YMn2Dx [5, 6] for x > 1 (see figure 4). The small γ -values can be attributed
to the small itinerant Co magnetic moments in this compound and to the weak dependence of
the exchange coupling constant J on k.

3.2. Antiferromagnetic materials

For antiferromagnets, above the Néel temperature TN , the relaxation rates (1/T1, 1/T2) should
depend on temperature according to equation (19), and the expression for the muon relaxation
rate λ should also differ only by a constant numerical prefactor and has the form

λ = constant × T

TN

(
δ

γ

)−1/2[ 1

1 − α
arctan

(
km

(
δ

γ

)−1/2)

+

√
α

(α − 1)
arctan

(
km√
α

(
δ

γ

)−1/2)]
. (22)

The µSR data for YMn2 taken after [8] and GdMn2 taken from [9] were analysed using
equation (22). The fitting parameters are given in table 1 and the temperature dependences of
the relaxation rates are presented in figures 2 and 3, respectively. For YMn2 the results for
heating and cooling runs give comparable values of γ . For GdMn2 (figure 3) we show fits with
TN as the free parameter (solid line) and with fixed TN (broken line) to the values calculated in
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Figure 2. The muon relaxation rate λ as a function of temperature for YMn2. The experimental
points are taken from [8] (↓: measured on cooling; ↑: measured on heating); the solid curves are
the curves fitted with equation (22).

the paper [8] using equation (1). It is interesting that curves fitted with fixed and free TN -values
do not differ too much, whereas the γ -values are apparently sensitive to TN (see table 1). For
GdMn2, at zero pressure, the curve for fixed TN is far out from the experimental points. The
reason is that the fixed Néel temperature (99 K) is very close to the first experimental point
(100 K), so the fit with TN as a free fitting parameter is much better. For GdMn2, γ is smaller
than for YMn2. It is interesting that γ increases with pressure. This means that decreasing
interatomic distances cause stronger dependence of the exchange interactions on the k-vector,
which seems quite reasonable.

In our previous paper [5] we fitted the µSR relaxation rates λ for YMn2Dx with x = 0.5,
1, 2, 3 and in [6] the NMR relaxation rates T1 and T2 of 2D for x = 0.65, 1, 1.5, 2, 2.5.
In figure 4 the relation between the γ -parameter and deuterium concentration x as obtained
from the fits to the formulae for λ, T1 and T2 [6] together with γ for YMn2 (see table 1) are
presented. It is also interesting that the γ -value for YMn2 is higher than that for YMn2D0.5

in accordance with the tendency visible for YMn2 deuterides (see figure 4). The curve in
figure 4 is just a guide to the eye and visualizes the evident decrease of γ with deuterium
content. It is also noteworthy that γ obtained from the fits of λ, T1 and T2 agrees reasonably
well for each deuterium concentration. The γ -parameter describes the strength of the influence
of the wavevector on the susceptibility dispersion relation (14). Making an expansion as in
equation (13), we get a dependence of the exchange coupling constant J on γ in the form

J (k)

J (K0)
= 1 − γ (k − K0)

2. (23)

This led us in [6] to the conclusion that the decrease of the γ -value with increasing
deuterium concentration presented in figure 4 can be understood as a change towards more
uniform (less k-dependent) exchange interactions for higher deuterium concentrations, for
which Mn–Mn distances increase and Mn moments are better localized.
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Figure 3. The muon relaxation rate λ as a function of temperature for GdMn2 for three values of
the external pressure. The experimental points are taken from [9]; the solid curves are the curves
fitted by use of equation (22) with TN as a free parameter; the dotted curves are the curves fitted
with fixed TN to the values from [9].
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the eye only.

The parameters obtained from fitting the formula (19) to the recent results for 2D relaxation
times T1 and T2 for TbMn2D2 [7] are collected in table 1. In figure 5 we present the results of
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Figure 5. The relaxation rates 1/T1 and 1/T2 as a function of temperature for TbMn2D2. The
experimental points are taken from [7]; the solid curves are the curves fitted using equation (19)
with TN as a free parameter; the dotted curves are curves fitted with TN fixed to the values from [7].

the fitting of T1 and T2 for TbMn2D2. It is clear that the results are not very sensitive to the
temperature TN , because the fits with TN as a free parameter (solid line) differ only slightly
from those with TN fixed to the values determined from the empirical formula [7]. In our fits
we have also assumed that the temperature-independent part of relaxation rates related to the
terbium exists [7]. The values of γ for TbMn2D2 are about three times higher than those for
YMn2D2. We suggest that this is caused by terbium atoms with large (about 9 µB ) magnetic
moments, that may indeed cause a stronger dependence of the exchange interactions on the
k-vector.

The comparison of changes of γ as a function of deuterium content in YMn2Dx and
changes of γ with pressure in GdMn2 is also very interesting. Deuterium atoms in interstitial
sites cause increase of the unit volume, acting as ‘negative pressure’. Indeed, we see that
positive pressure increases the γ -value (see table 1) whereas ‘negative pressure’ causes
decrease of γ (see figure 4). These findings led us to the conclusion that the increase of the
Mn–Mn distances causes flattening of the J (k) function, whereas shortening of the Mn–Mn
distances causes J (k) to be peaked, which seems quite reasonable.

4. Conclusions

The model presented for the quasicritical behaviour of the NMR relaxation rates T1 and T2

as well as the muon relaxation rate for ferromagnetic and antiferromagnetic cubic materials
was discussed and used to analyse the data for Y(Co1−x Alx)2 (weakly ferromagnetic), YMn2,
GdMn2, YMn2Dx and TbMn2D2 (antiferromagnets). The proposed formulae (12), (19) are
compatible with the simplified Moriya model of critical behaviour, as they give appropriate
limiting values of the critical exponent η close to the critical point. In the results of the
numerical calculations with use of our formulae, the most meaningful physical parameter of
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the model (γ ) has been obtained and analysed. The parameter γ describes the dependence of
the staggered susceptibility on wavevector k (equations (4) and (13)) and the k-dependence of
the exchange coupling constant J (k) as well. The fits made by means of our formulae (12), (19)
to the experimental data taken from different sources (µSR and NMR data) gave consistent
results (table 1).

On the other hand the values of TC,N obtained from fits within our model are systematically
lower than the values obtained from other static measurements (e.g. magnetic susceptibility) or
from fits to the empirical formulae with a critical exponent (1). This discrepancy results from a
systematic deviation in the temperature measurements, different definitions used to determine
TC,N and the sharpness of the critical transition. The γ -values are in a reasonable range, which
attests to the correctness of our model. The increase of γ with increasing pressure, positive in
GdMn2 and ‘negative’ in YMn2Dx , can be related to J (k) dependence on the Mn–Mn distance,
which seems very reasonable. Lovesey et al presented sophisticated theoretical models for
µSR in ferromagnets [3] and in antiferromagnets [4]. However, even for the authors of [3, 4]
it was difficult to verify their theory with experimental data. So we propose a parallel model,
which—as we showed—is in reasonably good agreement with the available experimental
results. We hope that the proposed extension of Moriya’s theory provides better insight into
the origin of critical behaviour and a better understanding of the role of spin fluctuations in
relaxation phenomena preceding magnetic ordering.
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